Toughened Epoxy Resin Systems for Filament Winding

Epoxy Research Resin RSL-4515 / EPIKURE™ Curing Agent 3300 and Epoxy Research Curing Agent RSC-4577

Introduction

Epoxy Research Resin RSL-4515/EPIKOTE Curing Agent 3300 or Epoxy Research Curing Agent RSC-4577 is based on a toughened epoxy cured with very low viscosity cycloaliphatic amines. The systems low viscosity and high toughness make it favorable for good fiber wet-out for filament windings for all composite pressure vessels (including Type IV vessels). It will allow the manufacture of an all carbon tank without increase in cost (via reduction in wall thickness).

Suggested Uses
- Composite Structures
- Pressure Vessels

Features
- Low Viscosity
- Good Elongation
- High Toughness

Typical Properties

Table 1 / Typical Component Properties

<table>
<thead>
<tr>
<th>Method</th>
<th>Units</th>
<th>Epoxy Research Resin RSL-4515</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxide Equivalent Weight</td>
<td>ASTM D1652 g/eq</td>
<td>177</td>
</tr>
<tr>
<td>Viscosity @ 25°C (77°F)</td>
<td>ASTM D1545 cP or mPa·s</td>
<td>5,800</td>
</tr>
<tr>
<td>Density @ 25°C (77°F)</td>
<td>ASTM D1475 g/cc</td>
<td>1.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Units</th>
<th>EPIKURE Curing Agent 3300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amine Value</td>
<td>ASTM D 2896 mg KOH/g</td>
<td>630-670</td>
</tr>
<tr>
<td>Amine Hydrogen Equivalent Weight</td>
<td>calculated g/H eq</td>
<td>43</td>
</tr>
<tr>
<td>Viscosity @ 25°C (77°F)</td>
<td>ASTM D1545 cP or mPa·s</td>
<td>12-19</td>
</tr>
<tr>
<td>Color</td>
<td>ASTM D1544 Gardner</td>
<td>250 max.</td>
</tr>
<tr>
<td>Density @ 25°C</td>
<td>ASTM D1475 g/cc</td>
<td>0.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Units</th>
<th>Epoxy Research Curing Agent RSC-4577</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amine Value</td>
<td>ASTM D 2896 mg KOH/g</td>
<td>400-600</td>
</tr>
<tr>
<td>Amine Hydrogen Equivalent Weight</td>
<td>calculated g/H eq</td>
<td>52</td>
</tr>
<tr>
<td>Viscosity @ 25°C (77°F)</td>
<td>ASTM D1545 cP or mPa·s</td>
<td>10-50</td>
</tr>
<tr>
<td>Density @ 25°C</td>
<td>ASTM D1475 g/cc</td>
<td>0.93-0.98</td>
</tr>
</tbody>
</table>
Mix Ratio | Material | 1 | 2
--- | --- | --- | ---
| Epoxy Research Resin RSL-451, pbw | 100 | 100 |
| EPIKURE Curing Agent 3300, pbw | 24 | |
| Epoxy Research Curing Agent RSC-4577, pbw | | 29 |

1 pbw = parts by weight

Mixing Instructions
The stated mixing ratio should be followed carefully. Adding more or less hardener than desired will result in an incomplete cure with limited performance that cannot be corrected. Resin and curing agent must be mixed carefully. Mix until no clouding is visible in the mixing container. Special attention must be paid to the walls and bottom of the mixing container when mixing by hand.

Typical System Properties

<table>
<thead>
<tr>
<th>Table 2 / Properties of Resin System</th>
<th>Units</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 25°C (77°F)</td>
<td>cP or mPa·s</td>
<td>1115</td>
<td>573</td>
</tr>
<tr>
<td>Pot Life(^1) (time to double initial viscosity @ 25°C)</td>
<td>minutes</td>
<td>58</td>
<td>90</td>
</tr>
<tr>
<td>Working time(^2) at 25°C (77°F)</td>
<td>hrs</td>
<td>115</td>
<td>256</td>
</tr>
<tr>
<td>Gel time(^3) at 30°C (77°F), 100g</td>
<td>minutes</td>
<td>109</td>
<td>210</td>
</tr>
</tbody>
</table>

\(^1\) Brookfield Viscometer
\(^2\) Time to peak temperature, based on 100g mass
\(^3\) Shyodu gel time

Graph 1 / Viscosity Development @25°C (77°F), 10 grams
Graph 2 / Temperature Development @25°C (77°F), 100 grams

Table 3 / Typical cured properties of neat resin system

Epoxy Research Resin RSL-4515/EPIKURE™ Curing Agent 3300

<table>
<thead>
<tr>
<th>Method</th>
<th>Units</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure Schedule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 1 followed by</td>
<td>hrs/°C (°F)</td>
<td>1/66 (151)</td>
<td>1.5/82 (180)</td>
</tr>
<tr>
<td>Step 2</td>
<td>hrs/°C (°F)</td>
<td>4/96 (205)</td>
<td>1.5/150 (302)</td>
</tr>
<tr>
<td>Tg by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSC (20°C/min)</td>
<td>ASTM D-3418 °C (°F)</td>
<td>109 (228)</td>
<td>134 (273)</td>
</tr>
<tr>
<td>DMA - E’ onset</td>
<td>ASTM D-4065 °C (°F)</td>
<td>112 (234)</td>
<td>135 (275)</td>
</tr>
<tr>
<td>DMA – tan delta peak</td>
<td>°C (°F)</td>
<td>121 (250)</td>
<td>143 (289)</td>
</tr>
<tr>
<td>Tensile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength at Yield</td>
<td>ASTM D-638 ksi</td>
<td>12.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Strength at Break</td>
<td>ksi</td>
<td>11.4</td>
<td>11.8</td>
</tr>
<tr>
<td>Elongation at Yield</td>
<td>%</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Elongation at Break</td>
<td>%</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Modulus</td>
<td>ksi</td>
<td>472</td>
<td>456</td>
</tr>
<tr>
<td>Fracture Toughness, K_Q</td>
<td>ASTM E-399 psi-in(^{1/2})</td>
<td>1596</td>
<td>1070</td>
</tr>
</tbody>
</table>

DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
Typical Cured State Properties

Table 4 / Typical cured properties of neat resin system

| Epoxy Research Resin RSL-4515/Epoxy Research Curing Agent RSC-4577 |
|---|---|

<table>
<thead>
<tr>
<th>Method</th>
<th>Units</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure Schedule</td>
<td>hrs/°C (°F)</td>
<td>1/66 (151)</td>
<td>1.5/82 (180)</td>
</tr>
<tr>
<td>Step 1 followed by</td>
<td>hrs/°C (°F)</td>
<td>4/96 (205)</td>
<td>1.5/150 (302)</td>
</tr>
<tr>
<td>Tg by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSC (20°C/min)</td>
<td>°C (°F)</td>
<td>95 (203)</td>
<td>101 (214)</td>
</tr>
<tr>
<td>DMA - E' onset</td>
<td>°C (°F)</td>
<td>96 (205)</td>
<td>98 (208)</td>
</tr>
<tr>
<td>DMA – tan delta peak</td>
<td>°C (°F)</td>
<td>104 (219)</td>
<td>109 (228)</td>
</tr>
<tr>
<td>Tensile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength at Yield</td>
<td>ASTM D-638 ksi</td>
<td>10.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Strength at Break</td>
<td>ksi</td>
<td>9.3</td>
<td>9.1</td>
</tr>
<tr>
<td>Elongation at Yield</td>
<td>%</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Elongation at Break</td>
<td>%</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Modulus</td>
<td>ksi</td>
<td>456</td>
<td>452</td>
</tr>
<tr>
<td>Fracture Toughness, Kc</td>
<td>ASTM E-399 psi-in(^{1/2})</td>
<td>1217</td>
<td>1739</td>
</tr>
</tbody>
</table>

Composite Fabrication / Filament Winding

The low viscosity and long working life of the resin system make it desirable for Filament Winding.

- **Mixing** – A high shear mixer is recommended to insure complete mixing. Mixing time should be kept to a minimum to avoid excess heat build-up of the resin system, as this can reduce the working life of the system.

- **Resin Bath** – The resin impregnation bath temperature should be as close to 25 °C (77 °F) as possible to maximize working life. However, slightly elevated temperatures may be required to obtain the appropriate viscosity for fiber wet-out.

- **Process** – A suggested cure cycle would include 1-2 hours at 60-80°C, followed by 1-3 hours at 90-150°C, using a ramp rate of 0.5-2.0°C/minute. The optimum temperatures will depend on parameters such as part thickness.
General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully-test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the SDS for the most current Safety and Handling information.

Please refer to the Hexion Inc. web site for Shelf Life and recommended Storage information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Safety Data Sheet (SDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. (“Hexion”) products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and SDSs on non-Hexion, Inc. products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, order placement, literature or technical assistance, visit our website at: www.hexion.com/epoxy