Introduction

EPI-REZ™ Resin 3522-W-60, EPI-REZ Resin 5520-W-60 and EPI-REZ Resin 5003-W-55 are nonionic, completely aqueous dispersions of epoxy resins. EPI-REZ Resin WD-510 is a liquid, Bisphenol A epoxy resin specifically designed for water dilution. Typical properties of these products are shown in Table 1. Dicyandiamide can be used as a curing agent with these epoxy resins to provide extended pot life formulations which cure at elevated temperatures (for example, 300-350°F) to give highly crosslinked systems suitable for service at high temperature.

Suggested Uses

- Saturants for filtration media
- Prepregs and composites
- Nonwoven binders
- Adhesives
- Electrical insulating materials
- Electrical dip coatings
- Alternatives to Melamine, Phenolic, and Urea based binders

Features

- Completely water reducible
- Zero to ultra low formaldehyde content
- Extended pot life
- B-stage capability
- High crosslink density
- High temperature performance
- Good chemical resistance
- Low color

Typical Properties

Table 1 / Typical Properties of Epoxy Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Resin Description</th>
<th>Percent Nonvolatile</th>
<th>Volatile Component</th>
<th>WPE, on Solids, g/eq</th>
<th>Viscosity 25°C, cP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI-REZ™ Resin 3522-W-60</td>
<td>Bisphenol A epoxy</td>
<td>60</td>
<td>Water</td>
<td>615-715</td>
<td>12,000</td>
</tr>
<tr>
<td>EPI-REZ Resin 5520-W-60</td>
<td>Urethane modified epoxy</td>
<td>59</td>
<td>Water</td>
<td>480-560</td>
<td>8000</td>
</tr>
<tr>
<td>EPI-REZ Resin 5003-W-55</td>
<td>Multifunctional BPA novolac epoxy</td>
<td>58</td>
<td>Water</td>
<td>195-215</td>
<td>7000</td>
</tr>
<tr>
<td>EPI-REZ Resin WD-510</td>
<td>Bisphenol A epoxy</td>
<td>100</td>
<td>None</td>
<td>190-205</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Example Formulations / Example Formulations for Waterborne Epoxy Resins Cured with Dicyandiamide

<table>
<thead>
<tr>
<th>Material</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts by weight, as supplied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI-REZ™ Resin 3522-W-60</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EPI-REZ Resin 5520-W-60</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EPI-REZ Resin 5003-W-55</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EPI-REZ Resin WD-510</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>EPON™ Resin 1002F</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>65</td>
</tr>
<tr>
<td>HELOXY™ Modifier 8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Dicyandiamide (SKW Corp.)</td>
<td>1.2</td>
<td>1.4</td>
<td>3.5</td>
<td>3.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2-Methyl imidazole (BASF Corp.)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>Deionized water</td>
<td>21</td>
<td>21</td>
<td>13</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Propylene glycol monomethyl ether</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>23</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>35</td>
</tr>
</tbody>
</table>

Formulating Guidance

Dicyandiamide (dicy) is a high functionality (4-7) curing agent which promotes dense epoxy crosslinking at less than stoichiometric levels. The amount of dicy and amine catalyst in a formulation is critical in balancing cure response, pot life and performance properties. The recommended use range of dicy to achieve full cure varies by product due to the resin equivalent weight. For EPI-REZ Resin 3522-W-60, 1.5-2.4 parts dicy per hundred parts (pph) solid resin is recommended. For EPI-REZ Resin 5520-W-60, a suggested dicy level is 1.9-3.1 pph solid resin. For EPI-REZ Resin 5003-W-55, a suggested dicy level is 5.0-8.2 pph solid resin. And for EPI-REZ Resin WD-510, a suggested dicy level is 5.0-8.2 pph solid resin.

Those applications which require a highly crosslinked resin system, such as structural applications, would use higher dicy levels. When the application requires improved moisture resistance, such as for fiber sizings or finishes, lower levels of dicy, which is hygroscopic, should be used. Lower dicy levels may also be used when full epoxide cure is not required.

Imidazoles are the preferred accelerators for dicy since they promote higher Tg values and better moisture resistance than tertiary amine catalysts. A typical level of 2-methyl imidazole (2-MI) catalyst is 0.1 to 0.2 pph solid resin. Higher levels can be used for improved cure response with a resulting shorter pot life.

When EPIKURE™ Curing Agent 3253 substitution for 2-MI is made in the EPI-REZ Resin 3522-W-60 formulation, it meets the ingredient requirements of FDA regulation 21 CFR 175.300 Polymeric Coatings. If the end product is intended for contact with food, it must comply with the extraction limitations imposed by 21 CFR 175.300. Hexion has not run such tests and cannot convey any assurance as to the final suitability of these formulas under that regulation.

Mixing Instructions

The epoxy resin products should be at room temperature (65-90°F) prior to formulating.

DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. Hexion MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY Hexion, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
Heat the deionized or distilled water to 150-175°F (65-80°C). Add the dicyandiamide to the warm water and agitate until completely dissolved. Additional heating may be necessary to maintain the 150-175°F temperature. When dissolution is complete, add the accelerator. Add the warm dicyandiamide/accelerator solution to the epoxy dispersion and agitate slowly at room temperature until well mixed (30-60 minutes). The mixing process with EPI-REZ Resin WD-510 may require more thorough agitation. If the dicyandiamide solution cools and begins to crystallize before it is added to the dispersion, it should be reheated to 150-175°F. An induction period of at least one hour is suggested before using the varnish mixture. Because of the low viscosity and multiphase nature of these systems, continuous agitation may be required to maintain formulation homogeneity.

Typical Varnish Properties

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel time at 340°F (171°C), seconds</td>
<td>140</td>
<td>120</td>
<td>132</td>
<td>140</td>
</tr>
<tr>
<td>Estimated pot life, days</td>
<td>>4</td>
<td>>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fiber Impregnation

For fiber impregnation or prepreg production, optimum conditions must be established for each manufacturing line since commercial equipment varies considerably with respect to air velocity, fabric tension, and varnish squeeze off devices.

The example formulations described above were prepared to allow impregnation of 7628 style woven fiberglass cloth to 40-43% resin content. Additional water dilution is recommended for applications such as fiber sizings or finishes where less resin add-on is needed.

Fiberglass prepreg properties are described in Table 4.

Cured State Properties

Laminates were constructed from 8 plies of 8" x 8", 7628-style prepreg pressed for 60 minutes at 340°F (171°C) and 150 psi. Mechanical, thermal and electrical properties of these laminates are described in Table 4.

Prepreg and Laminate Properties

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI-REZ 3522-W-60</td>
<td>EPI-REZ 5520-W-60</td>
<td>EPI-REZ 5003-W-55</td>
<td>EPON 1002F</td>
</tr>
</tbody>
</table>

Prepreg

- B-Stage conditions, minutes at °F
 - 10 at 250
 - 10 at 250
 - 15 at 325
 - 15 at 250
- Prepreg gel time, seconds at 340°F
 - 83
 - 60
 - 33
 - 67

8-Ply Laminates

- Resin content, %
 - 40
 - 41
 - 40
 - 39
- Glass transition (Tg) by DMA, °C
 - 98
 - 108
 - 186
 - 121
- Flexural Strength at 23 °C
 - lengthwise, psi
 - 60,670
 - 62,800
 - 65,100
 - 69,860
 - crosswise, psi
 - 51,070
 - 46,510
 - 58,580
 - 53,950
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant at 1 MHz, 23 °C</td>
<td>5.35</td>
<td>5.38</td>
<td>5.61</td>
<td>5.14</td>
</tr>
<tr>
<td>Dissipation factor at 1 MHz, 23 °C</td>
<td>0.025</td>
<td>0.027</td>
<td>0.025</td>
<td>0.020</td>
</tr>
<tr>
<td>Volume Resistivity at 23 °C, ohm-cm</td>
<td>1.5x10^15</td>
<td>1.0x10^15</td>
<td>5.6x10^14</td>
<td>1.0x10^15</td>
</tr>
<tr>
<td>Moisture Absorption, %</td>
<td>1.16</td>
<td>1.12</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>1 hour at 15 psi steam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEK Absorption, %</td>
<td>1.12</td>
<td>1.73</td>
<td>0</td>
<td>1.40</td>
</tr>
<tr>
<td>30 minute soak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 At 50% solids in MEK.
2 Prepreg slightly tacky at room temperature.
3 Eight plies of 8x8" prepreg pressed 60 minutes at 340 °F and 150 psi.
4 Tg measured on DuPont 952 Dynamic Mechanical Analyzer in the vertical mode at a heat rate of 5°C per minute.

Storage Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. (“Hexion”) products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, or order placement, please contact customer service:
www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com