Starting Formulation

SF 7010
Flexible Electrical Potting Compound
EPON™ Resin 828

Introduction

This general purpose electrical potting compound illustrates the use of polyethylene glycol to improve flexibility with minimal sacrifices in mechanical, thermal and electrical properties. The converter presented is a eutectic mixture of hexahydrophthalic anhydride and chlorendic anhydride which provides easier processing than solid anhydrides such as phthalic.

Suggested Uses

- Molded parts such as sand-core boxes for foundry work, pipe fitting, cases, and housings
- Electrical insulation such as transformer bushings for interior service

<table>
<thead>
<tr>
<th>Formula</th>
<th>Material</th>
<th>Supplier</th>
<th>Pounds</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A</td>
<td>EPON Resin 828</td>
<td>Hexion</td>
<td>65.0</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td>Carbowax 600</td>
<td>Union Carbide Corp.</td>
<td>35.0</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td>Total Part A</td>
<td></td>
<td>100.0</td>
<td>10.45</td>
</tr>
<tr>
<td>Part B</td>
<td>Hexahydrophthalic Anhydride /</td>
<td>Anhydrides & Chemicals, Inc.</td>
<td>75.00</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>Chlorendic Anhydride</td>
<td>Jonas Chemical Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMP-10</td>
<td>Rohm & Haas Co.</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Total Part B</td>
<td></td>
<td>75.25</td>
<td>6.09</td>
</tr>
</tbody>
</table>

Typical Handling

Table 1 / Handling and Reactivity Properties

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin/Converter Combining Ratio</td>
<td>by weight</td>
<td>4 : 3</td>
</tr>
<tr>
<td></td>
<td>by volume</td>
<td>1.72 : 1</td>
</tr>
<tr>
<td>Viscosity at 25 °C</td>
<td>cP</td>
<td>2,600</td>
</tr>
<tr>
<td>Density</td>
<td>lbs/gal</td>
<td>10.6</td>
</tr>
<tr>
<td>Pot Life at 25 °C</td>
<td>hrs</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Compounding

Resin Portion – Blend the Carbowax 600 and EPON Resin 828. If necessary, fillers such as silica or alumina may be incorporated into the resin portion.

Converter Portion – A blend of 70 parts hexahydrophthalic anhydride (HHPA) and 30 parts chlorendic anhydride should be heated to 82 °C and agitated until a clear solution is
Chlorendi anhydride should be heated to 82 °C and agitated until a clear solution is attained. Sparging with dry inert gas minimizes anhydride hydrolysis. This solution is stable indefinitely at room temperature.

Composite Blend – Add the HHPA chlorendic anhydride eutectic and DMP-10 to the resin portion and mix until a homogenous solution is attained.

Application Instructions

A typical cure schedule is 3 hours at 120 °C. Acceptable cures are also achieved overnight at 90 °C or in one hour at 150 °C. Large castings should be cured at the lowest temperature. Increasing or decreasing the amount of DMP-10 will shorten or lengthen, respectively, the time necessary for complete cure. Adjustments of the DMP-10 level will also affect the pot life.

The material to be potted is placed in the mold and heated to the cure temperature. The potting compound is then poured into the mold and vacuum deaired, if necessary, to eliminate voids. Silicone mold releases such as Dow-Corning Compound Number 7 are the most effective.

Table 2 / Cured State Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>psi</td>
<td>7,200</td>
</tr>
<tr>
<td>Tensile Elongation at Break</td>
<td>%</td>
<td>8.7</td>
</tr>
<tr>
<td>Izod Impact, notch</td>
<td>ft•lbs/inch</td>
<td>0.51</td>
</tr>
<tr>
<td>Hardness</td>
<td>Shore D</td>
<td>80</td>
</tr>
<tr>
<td>Water Absorption, 24 hours</td>
<td>%</td>
<td>0.58</td>
</tr>
<tr>
<td>Weight Loss, after 24 hours at 150 °C</td>
<td>%</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Electrical Properties

- **Dielectric Constant**
 - 2
 - Measured at 25 °C, 50% R.H. and 106 Hertz.

- **Dissipation Factor**
 - 0.027

- **Volume Resistivity**
 - at 25 °C
 - ohm•cm
 - 6.9×10^{14}
 - at 66 °C
 - ohm•cm
 - 1.2×10^{12}
 - at 92 °C
 - ohm•cm
 - 1.1×10^{10}

- **Surface Resistivity at 25 °C**
 - 5.42 x 10^{14}

1 Cured for 3 hours at 120 °C.
2 Measured at 25 °C, 50% R.H. and 106 Hertz.
3 Measured at 50% R.H., 500 volts for 1 minute.

Storage

Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully-test and qualify the formulation.

© and ™ Licensed trademarks of Hexion Inc.

DISCLAIMER

The information provided herein was believed by Hexion Inc. (“Hexion”) to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
along with the ingredients, methods, applications or equipment identified herein ("Information"), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. ("Hexion") products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, or order placement, please contact customer service:

www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com