Starting Formulation

SF 4023 One-Package Adhesive 828 and 58034 Latent One-Package Adhesive for Oily Steel

EPON™ Resin 828 and 58034 / Latent Curing Agents

Introduction

These starting point one-package adhesive formulations are especially suited for metal – metal bonding when the metal surfaces have a small amount of residual drawing oil, such as often encountered in automotive body assembly operations.

Suggested Uses

- Automotive stamped metal flange adhesives and other applications where metal panels may be contaminated with small amounts of residual drawing fluids/oils which cannot be removed before assembly.

Features

- One Pack
- Adhesion to stamped metal contaminated with small amounts of drawing oil
- Service temperatures up to 121°C (250°F)

Formula

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier</th>
<th>Units</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPON Resin 828</td>
<td>Hexion</td>
<td>pbw</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>EPON Resin 58034</td>
<td>Hexion</td>
<td>pbw</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Kevlar® Plup - thixorope</td>
<td>DuPont Advanced Fibers</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>Dyhard 100SF (dicyandiamide), micrized - latent curing agent</td>
<td>Degussa Corp. – Fine Chemicals</td>
<td>pbw</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Carbohydrazide, micrized - latent curing agent</td>
<td>Fairmount Chemicals</td>
<td>pbw</td>
<td>12.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Adipic Dihydrazide, micrized - latent curing agent</td>
<td>Fairmount Chemicals</td>
<td>pbw</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Imicure® AMI-1 (1-methylimidazole), - catalyst</td>
<td>Air Products</td>
<td>pbw</td>
<td>---</td>
<td></td>
<td>0.25</td>
<td>---</td>
</tr>
<tr>
<td>Dyhard UR300 (fenuron) - catalyst</td>
<td>Degussa Corp. – Fine Chemicals</td>
<td>pbw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Instructions

A high speed mixer (such as a Cowles) can be used; however, care should be taken to keep temperature as low as possible. Temperatures should be kept below 45°C (115°F).

Load EPON Resin 828 at room temperature or lowest practical temperature for your pumping equipment.

Add and disperse Kevlar pulp starting at 25 – 30°C. Higher viscosity (due to lower temperature) helps break-up and disperse the pulp.

Add curing agent and catalyst powders and mix until a smooth, uniform blend is achieved.

This formulation is a basic starting point and can be modified with other filler types, such as talc, clay, alumina, ground silica, wollastonite, or calcium carbonate.

Typical Handling Table 1 / Handling Properties
Application Instructions

These formulations will usually provide moderate bond strengths on metals lightly contaminated with drawing oils (<200 mg/sq. ft.). However, for optimum bond strengths, surfaces to be bonded should be clean and free of dust, dirt, grease, oil or other contaminants. It is recommended to roughen bonding surfaces. This can be accomplished with abrasive media appropriate for the materials being bonded (such as medium grit emery paper, abrasive disks, grit blasting, wire brushes, etc.). Abrasion should always be followed by degreasing to remove contaminants and loose particles. Chemical etching is another method to provide a rough surface for improved adhesion.

Apply by spreading a thin film approximately 0.005 inch thick over the surface to be bonded. Maintain light pressure during cure for optimum bonding.

Cure Schedule

1 hour @ 121°C (250°F) or 30 minutes @ 150°C (300°F)

Typical Cured State Properties

Table 1 / Adhesive Properties – Various Substrates

<table>
<thead>
<tr>
<th>Test Property</th>
<th>Substrate</th>
<th>ASTM</th>
<th>Units</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Shear Strength @ 25°C (77°F)</td>
<td>Galvanealed Steel</td>
<td>D-1002</td>
<td>psi</td>
<td>1180</td>
<td>1675</td>
<td>1540</td>
<td>1185</td>
</tr>
<tr>
<td></td>
<td>Cold-Rolled Steel</td>
<td>psi</td>
<td>1125</td>
<td>1625</td>
<td>900</td>
<td>975</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized Steel</td>
<td>psi</td>
<td>1200</td>
<td>1360</td>
<td>1210</td>
<td>1385</td>
<td></td>
</tr>
<tr>
<td>Tensile Shear Strength @ 121°C (250°F)</td>
<td>Galvanealed Steel</td>
<td>psi</td>
<td>400</td>
<td>735</td>
<td>345</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold-Rolled Steel</td>
<td>psi</td>
<td>435</td>
<td>785</td>
<td>265</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized Steel</td>
<td>psi</td>
<td>430</td>
<td>860</td>
<td>175</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

1 Test coupons were lightly coated with drawing oil.

2 Cure cycle simulated automotive paint bake cycle: 15 minutes @ 157°C (315°F) followed by 60 minutes @ 25°C (77°F), followed by 30 minutes @ 121°C (250°F).

Storage

Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com.

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully-test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet.

©and ™ Licensed trademarks of Hexion Inc.

DISCLAIMER

The information provided herein was believed by Hexion Inc. (“Hexion”) to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. Hexion MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY Hexion, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
Questions and requests for information on Hexion, Inc. ("Hexion") products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information
For product prices, availability, or order placement, please contact customer service:
www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com