Starting Formulation

SF 8002

Flame Retardant Prepreg Laminating Compound for High Temperature and Thin Laminating Applications

EPON™ Resin SU-8 and 1163

Introduction
A combination of EPON Resin SU-8 high functionality epoxy resin and EPON Resin 1163 brominated epoxy resin are used in this formulation for finished laminates.

Suggested Uses
- Printed circuit boards qualifying under the NEMA G-11 and FR-5 specifications
- Thin laminates for multilayer circuitry qualifying under NEMA FR-4-UT and MIL-P-55617A, Type GF specifications
- Chopped glass molding compounds

Features
- Dry prepreg with up to 4 months or greater shelf life
- Rapid gelation in press
- High strength retention at 175 °C
- Good retention of peel strength and dimensional stability after exposure to hot solder, degreasing solvents, copper etching solutions, and plating solutions
- Thin laminates are non-burning when tested in accordance with ASTM D568

Formula

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
<th>Pounds</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPON Resin SU-8</td>
<td>Hexion</td>
<td>65.0</td>
<td>6.57</td>
</tr>
<tr>
<td>EPON Resin 1163</td>
<td>Hexion</td>
<td>35.0</td>
<td>2.32</td>
</tr>
<tr>
<td>Acetone</td>
<td>Shell Chemical Company</td>
<td>40.0</td>
<td>6.06</td>
</tr>
<tr>
<td>Dicyandiamide</td>
<td>SKW Corporation</td>
<td>4.0</td>
<td>0.35</td>
</tr>
<tr>
<td>2-Methoxyethanol</td>
<td>Union Carbide Corporation</td>
<td>40.0</td>
<td>4.98</td>
</tr>
<tr>
<td>1-Methylimidazole</td>
<td>BASF-Wyandotte Corporation</td>
<td>0.2</td>
<td>0.023</td>
</tr>
<tr>
<td>Total Formulation</td>
<td></td>
<td>184.2</td>
<td>20.30</td>
</tr>
</tbody>
</table>

Mixing Instructions
Dissolve the EPON Resin SU-8 and EPON Resin 1163 in acetone. This step requires a closed tank equipped with a heating jacket or coils, an agitator, and a water-cooled condenser. Solutions of these resins in acetone or other desired solvent line-ups can be supplied upon request. To eliminate the crystallization of brominated epoxy resin solutions during long term storage, a solution blend of EPON Resin SU-8 and the brominated epoxy resin, EPON Resin 1163, is suggested.

Dissolve the dicyandiamide into the 2-methoxyethanol using agitation at a temperature of 50 °C or higher. When all the dicyandiamide has been dissolved, add this warm solution to the resin solution at normal room temperature under moderate speed agitation. Continue the agitation while adding the 1-methylimidazole accelerator, and blend to a homogeneous, clear solution.

It is important to completely dissolve the dicyandiamide in the glycol ether solvent prior to adding it to the resin solution. Dicyandiamide is only sparingly soluble in acetone, and any undissolved particles will serve as “seeds” or nuclei for crystallization of the dissolved dicyandiamide during storage of the varnish.
Dicyandiamide during storage of the varnish.

Typical Formulation

Table 1 / Properties of Laminating Solution

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 25 °C</td>
<td>cP</td>
<td>90</td>
</tr>
<tr>
<td>Density</td>
<td>lbs/gal</td>
<td>9.07</td>
</tr>
<tr>
<td>Pot life at 25 °C</td>
<td>wks</td>
<td>4-6</td>
</tr>
<tr>
<td>Gel time, stroke cure at 160 °C</td>
<td>sec.</td>
<td>117</td>
</tr>
</tbody>
</table>

Prepreg Procedures

Parameters affecting the resin pick-up and degree of "B" stage in commercial impregnation/drying tower operation are:

- Viscosity, solids content, solvent volatility, accelerator concentration, and age of the varnish
- Clearances and fabric tension on squeeze rolls and/or doctor bars
- Residence time of impregnation fabric in the drying tower
- Air temperature and air velocity in the drying tower

Impregnation of the lightweight glass used in thin laminates is easily accomplished with this system using conventional wetting and squeeze-off assemblies. Use of higher solvent levels in this compound might be necessary to provide the wetting characteristics needed when using lightweight cloth.

Optimum conditions for prepreg production must be established for each manufacturing line, since industrial equipment varies considerably with respect to air velocity, the ratio of air exhausted to air recirculated, fabric tension, and varnish squeeze-off devices. Air temperatures as high as 175 °C are commonly used in commercial drying towers to process epoxy/dicy prepregs at high production speeds.

The usable life of this prepreg should be approximately three months when stored at normal room temperature or below, and in a low humidity environment.

Prepreg Properties

Table 2 / Prepreg Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-stage schedule, 125°C in a forced air oven</td>
<td>min.</td>
<td>10</td>
</tr>
<tr>
<td>Resin pick-up</td>
<td>%</td>
<td>38-42</td>
</tr>
<tr>
<td>Percent flow, cured at 175°C and 150 psi</td>
<td>%</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Style 181 glass prepregs were prepared from laminating solutions aged at room temperature for periods ranging from 2 hours to 3 weeks.

Cure Properties

Table 3 / Press Cure Conditions and Laminate Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact period</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Platen temperature</td>
<td>°C</td>
<td>175</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi</td>
<td>150</td>
</tr>
<tr>
<td>Time in press</td>
<td>min.</td>
<td>40</td>
</tr>
</tbody>
</table>

© and ™ Licensed trademarks of Hexion Inc.

DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
Table 4 / Properties of Formulation No. 8002 Glass Laminate vs. NEMA G-5 Requirements

<table>
<thead>
<tr>
<th>Laminate property</th>
<th>Conditioning</th>
<th>NEMA G-5 requirements</th>
<th>Test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin content, weight percent</td>
<td>—</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Thickness, inches</td>
<td>—</td>
<td>—</td>
<td>0.098</td>
</tr>
<tr>
<td>Flexural strength, psi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lengthwise</td>
<td>23 °C, 50% RH</td>
<td>6 x 10⁴ min.</td>
<td>9.1 x 10⁴</td>
</tr>
<tr>
<td>Crosswise</td>
<td>23 °C, 50% RH</td>
<td>5 x 10⁴ min.</td>
<td>7.7 x 10⁴</td>
</tr>
<tr>
<td>Flexural strength, %</td>
<td>58,000 psi</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lengthwise</td>
<td>1 hour at 150 °C</td>
<td>50 min</td>
<td>64</td>
</tr>
<tr>
<td>IZOD impact, ft•lb/inch notch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lengthwise</td>
<td>48 hours at 50 °C</td>
<td>7.0 min.</td>
<td>15.8</td>
</tr>
<tr>
<td>Crosswise</td>
<td>48 hours at 50 °C</td>
<td>5.5 min.</td>
<td>13.6</td>
</tr>
<tr>
<td>Peel strength, lb/inch width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 oz. copper</td>
<td>1 hour at 150 °C</td>
<td>3.0 min.</td>
<td>6.5</td>
</tr>
<tr>
<td>1 oz. copper</td>
<td>20 sec. solder dip</td>
<td>8.0 min.</td>
<td>8.5</td>
</tr>
<tr>
<td>Water absorption, %</td>
<td>24 hours at 23 °C</td>
<td>0.20 max.</td>
<td>0.06</td>
</tr>
<tr>
<td>Volume resistivity, μm²/cm²</td>
<td>96 hours at 35 °C, 90% RH</td>
<td>10⁶ min.</td>
<td>9 x 10⁶</td>
</tr>
<tr>
<td>Surface resistivity</td>
<td>96 hours at 35 °C, 90% RH</td>
<td>10⁴ min.</td>
<td>9 x 10⁷</td>
</tr>
<tr>
<td>Dielectric constant, %</td>
<td>23 °C, 50% RH</td>
<td>5.2 max.</td>
<td>5.1</td>
</tr>
<tr>
<td>at 1 megacycle</td>
<td>24 hours at 23 °C, in water</td>
<td>5.4 max.</td>
<td>5.3</td>
</tr>
<tr>
<td>Dissipation factor, %</td>
<td>23 °C, 50% RH</td>
<td>0.025 max.</td>
<td>0.015</td>
</tr>
<tr>
<td>at 1 megacycle</td>
<td>24 hours at 23 °C, in water</td>
<td>0.035 max.</td>
<td>0.017</td>
</tr>
<tr>
<td>Dielectric breakdown (KV),</td>
<td>23 °C, 50% RH</td>
<td>45 min.</td>
<td>> 56</td>
</tr>
<tr>
<td>parallel to laminations</td>
<td>48 hours at 50 °C</td>
<td>40 min.</td>
<td>> 56</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burning time, seconds</td>
<td>—</td>
<td>15 max.</td>
<td>3</td>
</tr>
<tr>
<td>Burning length, inches</td>
<td>—</td>
<td>1 max.</td>
<td>Nil</td>
</tr>
</tbody>
</table>

¹ Twelve-ply 181 style. 1-550 finish glass.
Glass Laminate 1 vs. MIL-P-55617A, Type GE and NEMA G-10-UT Requirements

<table>
<thead>
<tr>
<th>Laminate property</th>
<th>Conditioning</th>
<th>Specification requirements</th>
<th>Test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin content, weight percent</td>
<td>—</td>
<td>—</td>
<td>57</td>
</tr>
<tr>
<td>Thickness, inches</td>
<td>—</td>
<td>0.031 max.</td>
<td>0.003</td>
</tr>
<tr>
<td>Visual effect of solder dip</td>
<td>20 seconds at 200 °C</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Peel strength, lb/inch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 25 °C</td>
<td>20 second solder dip</td>
<td>6 min.</td>
<td>8.1</td>
</tr>
<tr>
<td>at 25 °C</td>
<td>5 temperature cycles</td>
<td>6 min.</td>
<td>8.4</td>
</tr>
<tr>
<td>at 25 °C</td>
<td>1 hr. at 125 °C</td>
<td>7 min.</td>
<td>9.0</td>
</tr>
<tr>
<td>at 25 °C</td>
<td>Exposure to plating solution</td>
<td>5 min.</td>
<td>76</td>
</tr>
<tr>
<td>at 125 °C</td>
<td>None</td>
<td>5 min.</td>
<td>6.1</td>
</tr>
<tr>
<td>Volume resistivity, ohm·cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 25 °C</td>
<td>96 hours at 35 °C, 90% RH</td>
<td>10^{12} min.</td>
<td>11×10^{13}</td>
</tr>
<tr>
<td>at 125 °C</td>
<td>24 hours at 125 °C</td>
<td>109 min.</td>
<td>2.5×10^{10}</td>
</tr>
<tr>
<td>Surface resistivity, ohm·cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 25 °C</td>
<td>96 hours at 35 °C, 90% RH</td>
<td>10^{10} min.</td>
<td>$2.8 \times 1.1 \times 10^{12}$</td>
</tr>
<tr>
<td>at 125 °C</td>
<td>24 hours at 125 °C</td>
<td>10^{9} min.</td>
<td>1.8×10^{11}</td>
</tr>
<tr>
<td>Dimensional stability, inches/inch</td>
<td>Etching</td>
<td>0.0005 max.</td>
<td>0.00010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 minutes at 170 °C</td>
<td>0.0005 max.</td>
<td>< 0.000005</td>
</tr>
<tr>
<td></td>
<td>5 temperature cycles</td>
<td>0.0003 max.</td>
<td>0.00029</td>
</tr>
<tr>
<td>Dielectric strength, volt/ml</td>
<td>48 hr. water immersion at 50 °C</td>
<td>750 min.</td>
<td>990</td>
</tr>
<tr>
<td>Dielectric constant, at 1 megacycle</td>
<td>None</td>
<td>5.4 max.</td>
<td>3.6</td>
</tr>
<tr>
<td>Dissipation factor, at 1 megacycle</td>
<td>None</td>
<td>0.035 max.</td>
<td>0.01</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn time</td>
<td>None</td>
<td>15 max.</td>
<td>Non-burning</td>
</tr>
<tr>
<td>Burn length</td>
<td>None</td>
<td>12 max.</td>
<td>Non-burning</td>
</tr>
</tbody>
</table>

1. Two-ply laminates prepared from Style 106, GB-399 Finish Glass.
2. One ounce per square tool copper with “TC” treatment.
3. Cycle conditions: 30 minutes at 125 °C, 15 minutes at 25 °C, 30 minutes at -65 °C, and 15 minutes at 25 °C.
4. Exposed to hot trichloroethylene vapor, hot aqueous sodium hydroxide/sodium carbonate, hot aqueous sulfuric acid/boric acid and solutions.
Storage

Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully-test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. (“Hexion”) products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, or order placement, please contact customer service:

www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com