Starting Formulation

SF 7011

General Purpose Electric Molding Compounding

EPON™ Resin 1002F

Introduction
This general purpose electrical molding compound provides good mechanical and electrical properties for transfer or compression molding of electrical and electronic components. The combination of tetrachlorophthalic anhydride and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride provides acceptable cured state properties at a low press cycle temperature of 150 °C.

Formula

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPON Resin 1002F</td>
<td>Hexion</td>
<td>100.0</td>
</tr>
<tr>
<td>Tetrachlorophthalic Anhydride, (TCPA)</td>
<td>Monsanto Co.</td>
<td>22.7</td>
</tr>
<tr>
<td>3,3′,4,4′-Benzophenone Tetracarboxylic Dianhydride, (BTDA)</td>
<td>Allco Chemical Co.</td>
<td>11.2</td>
</tr>
<tr>
<td>Zinc Stearate</td>
<td>Witco Chemical Corp.</td>
<td>6.0</td>
</tr>
<tr>
<td>Carnauba Wax</td>
<td>Frank B. Ross Co., Inc.</td>
<td>1.3</td>
</tr>
<tr>
<td>Carbon Black</td>
<td>Columbian Chemical Co.</td>
<td>1.3</td>
</tr>
<tr>
<td>Fused Silica, GP-111</td>
<td>Cambell Chemical Co.</td>
<td>317.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>459.9</td>
</tr>
</tbody>
</table>

Compounding
Grind components not supplied in powder form to a particle size finer than 50 mesh using a hammermill. All anhydrides need to be approximately 325 mesh. Add raw materials in the order given and blend to a homogeneous mix. A Twin-Shell blender equipped with an intensifier bar works well for this step. Charge the loose powder in the feed hopper of a single or double screw extruder, or a 2-roll mill, between 71 and 88 °C. Granulate to between 8 and 50 mesh for general purpose use or press into preforms after granulating for subsequent molding.

Typical Handling

Table 1 / Handling Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Granular</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Gel Time</td>
<td>sec.</td>
<td>60</td>
</tr>
<tr>
<td>at 150 °C</td>
<td>sec.</td>
<td>28</td>
</tr>
<tr>
<td>Specific Gravity at 25 °C</td>
<td>g/ml</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Molding Conditions
Satisfactory cures can be achieved in 1 to 4 minutes at 120 to 180 °C in a transfer press. A press cycle time of less than 2 minutes is practical for parts molded in the temperature range of 150 to 180 °C. A useful transfer pressure range is 500 to 2,000 psi.
Typical Molding Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiral Flow per EMMI 1-66, 1,000 psi at 180 °C</td>
<td>in</td>
<td>46</td>
</tr>
<tr>
<td>Hot Hardness upon ejection from 180 °C mold</td>
<td>Shore D</td>
<td>75</td>
</tr>
</tbody>
</table>

Typical Cured State Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>As Molded</th>
<th>Post Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Deflection Temperature</td>
<td>°C</td>
<td>115</td>
<td>130</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>psi</td>
<td>11,000</td>
<td>10,500</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>psi</td>
<td>20,000</td>
<td>18,500</td>
</tr>
<tr>
<td>Molded Density</td>
<td>gm/cc</td>
<td>1.76</td>
<td>1.76</td>
</tr>
<tr>
<td>Mold Shrinkage</td>
<td>cm/cm</td>
<td>0.006</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Electrical

Volume Resistivity

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Units</th>
<th>As Molded</th>
<th>Post Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>ohm•cm</td>
<td>1.0×10^{16}</td>
<td>4.0×10^{16}</td>
</tr>
<tr>
<td>66 °C</td>
<td>ohm•cm</td>
<td>2.8×10^{15}</td>
<td>5.7×10^{15}</td>
</tr>
<tr>
<td>93 °C</td>
<td>ohm•cm</td>
<td>1.6×10^{14}</td>
<td>4.2×10^{14}</td>
</tr>
<tr>
<td>130 °C</td>
<td>ohm•cm</td>
<td>5.2×10^{12}</td>
<td>8.7×10^{12}</td>
</tr>
<tr>
<td>150 °C</td>
<td>ohm•cm</td>
<td>4.5×10^{11}</td>
<td>5.5×10^{11}</td>
</tr>
<tr>
<td>180 °C</td>
<td>ohm•cm</td>
<td>4.0×10^{10}</td>
<td>4.8×10^{10}</td>
</tr>
</tbody>
</table>

Dielectric Constant

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>3.79</td>
</tr>
<tr>
<td>40 °C</td>
<td>3.80</td>
</tr>
<tr>
<td>60 °C</td>
<td>3.81</td>
</tr>
<tr>
<td>80 °C</td>
<td>3.86</td>
</tr>
<tr>
<td>100 °C</td>
<td>3.91</td>
</tr>
<tr>
<td>120 °C</td>
<td>4.23</td>
</tr>
<tr>
<td>140 °C</td>
<td>4.35</td>
</tr>
<tr>
<td>160 °C</td>
<td>4.36</td>
</tr>
<tr>
<td>180 °C</td>
<td>4.39</td>
</tr>
</tbody>
</table>

Dissipation Factor

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>0.002</td>
</tr>
<tr>
<td>40 °C</td>
<td>0.002</td>
</tr>
<tr>
<td>60 °C</td>
<td>0.002</td>
</tr>
<tr>
<td>80 °C</td>
<td>0.004</td>
</tr>
</tbody>
</table>

© and ™ Licensed trademarks of Hexion Inc.

DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. Hexion MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Loss Factor 1</th>
<th>Loss Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °C</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>100 °C</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>120 °C</td>
<td>0.025</td>
<td>0.020</td>
</tr>
<tr>
<td>140 °C</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>160 °C</td>
<td>0.040</td>
<td>0.016</td>
</tr>
<tr>
<td>180 °C</td>
<td>0.076</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Loss Factor

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Loss Factor 1</th>
<th>Loss Factor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>0.009</td>
<td>0.007</td>
</tr>
<tr>
<td>40 °C</td>
<td>0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>60 °C</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>80 °C</td>
<td>0.015</td>
<td>0.009</td>
</tr>
<tr>
<td>100 °C</td>
<td>0.034</td>
<td>0.015</td>
</tr>
<tr>
<td>120 °C</td>
<td>0.106</td>
<td>0.081</td>
</tr>
<tr>
<td>140 °C</td>
<td>0.085</td>
<td>0.084</td>
</tr>
<tr>
<td>160 °C</td>
<td>0.173</td>
<td>0.087</td>
</tr>
<tr>
<td>180 °C</td>
<td>0.335</td>
<td>0.151</td>
</tr>
</tbody>
</table>

1 Values were obtained by testing bars molded from dielectrically heated preforms at 175 °C for 3 minutes at 1,000 psi.

2 Bars were postcured for 4 hours at 175 °C.

Storage Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully-test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. (“Hexion”) products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, or order placement, please contact customer service:

www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com
DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. Hexion MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY Hexion, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.