Starting Formulation

SF 7001

Flame Retardant Electrical Potting Compound
EPON™ Resin 828 and 1163 / HELOXY™ Modifier 56

Introduction

This general purpose electrical potting compound illustrates the use of brominated epoxy resins to achieve flame retardancy with minimal sacrifice in mechanical, thermal and electrical properties. Two filler options are presented to offer the compounder a choice of maximum flame retardance (Option A) or maximum economy (Option B).

<table>
<thead>
<tr>
<th>Formula</th>
<th>Material</th>
<th>Supplier</th>
<th>Pounds</th>
<th>Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin Portion</td>
<td>EPON Resin 828</td>
<td>Hexion</td>
<td>50.0</td>
<td>5.18</td>
</tr>
<tr>
<td></td>
<td>HELOXY Modifier 56</td>
<td>Hexion</td>
<td>30.0</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td>EPON Resin 1163</td>
<td>Hexion</td>
<td>20.0</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Total Resin Portion</td>
<td></td>
<td>100.0</td>
<td>8.93</td>
</tr>
<tr>
<td>Converter Portion</td>
<td>Hexahydrophthalic Anhydride</td>
<td>Anhydrides & Chemicals, Inc.</td>
<td>61.5</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>Diethylaminoethanol</td>
<td>Pennwalt Corp.</td>
<td>0.5</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Total Converter Portion</td>
<td></td>
<td>62.0</td>
<td>6.28</td>
</tr>
<tr>
<td>Filler Portion</td>
<td>Option A</td>
<td>Hydrated Alumina C-331</td>
<td>162.0</td>
<td>8.04</td>
</tr>
<tr>
<td></td>
<td>Al-Sil-Ate NC</td>
<td>Freeport Kaolin Co.</td>
<td>152.0</td>
<td>7.07</td>
</tr>
<tr>
<td></td>
<td>Antimony Trioxide</td>
<td>PQ Corp.</td>
<td>10.0</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Total Filler Portion</td>
<td></td>
<td>162.0</td>
<td>7.28</td>
</tr>
</tbody>
</table>

Compounding Procedure

Resin Portion
Mix all resin components using high speed agitation and moderate heat until a homogeneous liquid blend is attained. A maximum temperature of 93 °C should be sufficient for this operation, and a blanket of inert gas should be maintained over the resin during mixing to retard viscosity increase and color development, respectively.

Converter Portion
Melt the hexahydrophthalic anhydride at a temperature of approximately 65 °C. Add the diethylaminoethanol and cool.
When ready to use the compound, mix the resin and converter portions under moderate speed agitation. After mixing is complete, add the filler and continue agitation until the filler has been thoroughly dispersed. Heat to a suitable viscosity for application, apply vacuum to deaerate, and pour into preheated molds.

Typical Properties Table 1 / Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Unfilled</th>
<th>Filler Option A</th>
<th>Filler Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 25 °C</td>
<td>cP</td>
<td>7200</td>
<td>–</td>
</tr>
<tr>
<td>Density</td>
<td>lbs/gal</td>
<td>10.65</td>
<td>13.9</td>
</tr>
<tr>
<td>Gel Time 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 93 °C</td>
<td>min.</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>at 121 °C</td>
<td>min.</td>
<td>–</td>
<td>8</td>
</tr>
</tbody>
</table>

1 1/8 inch thickness.

Typical Cured State Table 2 / Cured State Properties

<table>
<thead>
<tr>
<th>Units</th>
<th>Unfilled</th>
<th>Filler Option A</th>
<th>Filler Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Deflection Temp</td>
<td>°C</td>
<td>90</td>
<td>89</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>psi</td>
<td>12,000</td>
<td>6,500</td>
</tr>
<tr>
<td>Tensile Elongation at Break</td>
<td>%</td>
<td>6.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>psi</td>
<td>21,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Flexural Modulus, Initial</td>
<td>ksi</td>
<td>520</td>
<td>1,100</td>
</tr>
<tr>
<td>Compressive Strength,Yield</td>
<td>psi</td>
<td>15,000</td>
<td>–</td>
</tr>
<tr>
<td>Izod Impact, notch</td>
<td>ft•lb/in.</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>Hardness</td>
<td>Shore D</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Water Absorption, 24 hours</td>
<td>%</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Weight Loss, 24 hours, 150 °C</td>
<td>%</td>
<td>–</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Flammability 3

<table>
<thead>
<tr>
<th>Rating</th>
<th></th>
<th>Self- Extinguishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Self-Extinguish</td>
<td>seconds 120</td>
<td>0</td>
</tr>
<tr>
<td>Extent of Burning</td>
<td>inches 1.0</td>
<td>0</td>
</tr>
<tr>
<td>Linear Shrinkage</td>
<td>inch/inch 0.017</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Electrical Properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant</td>
<td>3.51</td>
</tr>
<tr>
<td>Dissipation Factor</td>
<td>0.015</td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Resistivity</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>25°</td>
<td>4.9 x 10^{15} ohm-cm</td>
</tr>
<tr>
<td>66°</td>
<td>3.1 x 10^{15} ohm-cm</td>
</tr>
<tr>
<td>93°</td>
<td>3.0 x 10^{15} ohm-cm</td>
</tr>
<tr>
<td>130°</td>
<td>3.3 x 10^{13} ohm-cm</td>
</tr>
<tr>
<td>150°</td>
<td>2.9 x 10^{12} ohm-cm</td>
</tr>
<tr>
<td>180°</td>
<td>2.6 x 10^{11} ohm-cm</td>
</tr>
<tr>
<td>200°</td>
<td>7.2 x 10^{10} ohm-cm</td>
</tr>
</tbody>
</table>

1Cured at 93 °C for 2 hours and followed by 177 °C for 4 hours.
2Cured at 120 °C for 16 hours.
3Determined per ASTM D-635.
4Determined at 100 Hertz and 25 °C.

Storage Recommendations regarding storage conditions can be obtained by visiting our web site at www.hexion.com

General Information

These are starting formulations and are not proven in the user’s particular application but are simply meant to demonstrate the efficacy of the products and to assist in the development of the user’s own formulation. It is the user’s responsibility to fully test and qualify the formulation, along with the ingredients, methods, applications or equipment identified herein (“Information”), by the user’s knowledgeable formulator or scientist, and to determine the appropriate use conditions and legal restrictions, prior to use of any Information.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion, Inc. (“Hexion”) products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Contact Information

For product prices, availability, or order placement, please contact customer service:

www.hexion.com/Contacts/

For literature and technical assistance, visit our website at www.hexion.com

DISCLAIMER

The information provided herein was believed by Hexion Inc. (“Hexion”) to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion’s terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion’s specifications. Nothing contained herein constitutes an offer for the sale of any product.